Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 6481, 2024 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499584

RESUMO

The active DNA demethylation process, which involves TET proteins, can affect DNA methylation pattern. TET dependent demethylation results in DNA hypomethylation by oxidation 5-methylcytosine (5-mC) to 5-hydroxymethylcytosine (5-hmC) and its derivatives. Moreover, TETs' activity may be upregulated by ascorbate. Given that aberrant DNA methylation of genes implicated in breast carcinogenesis may be involved in tumor progression, we wanted to determine whether breast cancer patients exert changes in the active DNA demethylation process. The study included blood samples from breast cancer patients (n = 74) and healthy subjects (n = 71). We analyzed the expression of genes involved in the active demethylation process (qRT-PCR), and 5-mC and its derivatives level (2D-UPLC MS/MS). The ascorbate level was determined using UPLC-MS. Breast cancer patients had significantly higher TET3 expression level, lower 5-mC and 5-hmC DNA levels. TET3 was significantly increased in luminal B breast cancer patients with expression of hormone receptors. Moreover, the ascorbate level in the plasma of breast cancer patients was decreased with the accompanying increase of sodium-dependent vitamin C transporters (SLC23A1 and SLC23A2). The presented study indicates the role of TET3 in DNA demethylation in breast carcinogenesis.


Assuntos
Neoplasias da Mama , Dioxigenases , Humanos , Feminino , Desmetilação do DNA , Neoplasias da Mama/genética , Cromatografia Líquida , Espectrometria de Massas em Tandem , 5-Metilcitosina/metabolismo , Metilação de DNA , Biomarcadores/metabolismo , DNA/metabolismo , Epigênese Genética , Leucócitos/metabolismo , Carcinogênese/genética , Dioxigenases/genética
2.
Contemp Oncol (Pozn) ; 23(2): 74-80, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31316288

RESUMO

Alterations in DNA methylation may cause disturbances in regulation of gene expression, including drug metabolism and distribution. Moreover, many cancers, including breast cancer, are characterized by DNA hypomethylation and a decreased 5-hydroxymethylcytosine level. The abnormal cell growth found in breast carcinoma might be the result of impaired up-regulation of breast cancer receptors. Receptors' expression in breast cancer determines clinical outcome, and it is possible that they lead to different DNA methylation patterns. Excessive steroid exposure can affect DNA methylation by promoting demethylation of CpG islands in promoter regions of genes, and hence may have an impact on promotion and progression of breast cancer cells. Tamoxifen, as a leading drug in breast cancer hormone therapy, has an ability to act like estrogen or antiestrogen depending on the type and localization of the breast cancer receptor. Further studies are needed to determine whether tamoxifen, similarly to steroids, may evoke changes in methylation pattern.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...